The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins.
نویسندگان
چکیده
BACKGROUND 5S ribosomal RNA is the smallest rRNA. Its Watson-Crick helices were identified more than 20 years ago, but the conformations of its loops have long defied analysis. One of the three arms of 5S rRNA, residues 69-106 in Escherichia coli, contains a 14-residue internal loop called loop E. The sequence of loop E is conserved within kingdoms, and is terminated by a pyrimidine-rich loop called loop D. Loop E is the binding site for the ribosomal protein L25 in the E. coli ribosome. RESULTS The solution structure of a 42-nucleotide derivative of E. coli 5S rRNA that includes loops D and E has been determined by nuclear magnetic resonance spectroscopy. Formally, loop E is not a loop at all; it is a double helical structure that contains seven, consecutive non-Watson-Crick base pairs. The major groove of the molecule is narrowed in loop E, and an unusual array of hydrogen-bond donors and acceptors appear in its minor groove. Loop D, which on paper looks like a three-pyrimidine terminal loop closed by a GC, is better thought of as a five-base loop because its closing GC is not a normal Watson-Crick pair. The two pyrimidines on the 5'-side of the loop are stacked on each other, and tilt into the minor groove of the adjacent helix. The third pyrimidine is fully exposed to solvent. CONCLUSIONS This structure rationalizes all the biochemical and chemical protection data available for the loop E-loop D arm of intact 5S rRNA. While the molecule is double helical over its entire length, the geometry of its internal loop is highly irregular, and its irregularities may explain why the loop E-loop D arm of 5S rRNA interacts specifically with ribosomal protein L25 in E. coli.
منابع مشابه
The solution structure of the loop E region of the 5S rRNA from spinach chloroplasts.
A structure has been obtained for the loop E region of the 5S rRNA from Spinacia oleracia chloroplast ribosomes using residual dipolar coupling data as well as NOE, J coupling and chemical shift information. Even though the loop E sequence of this chloroplast 5S rRNA differs from that of Escherichia coli loop E at approximately 40% of its positions, its conformation is remarkably similar to tha...
متن کاملThe NMR structure of the 5S rRNA E-domain-protein L25 complex shows preformed and induced recognition.
The structure of the complex between ribosomal protein L25 and a 37 nucleotide RNA molecule, which contains the E-loop and helix IV regions of the E-domain of Escherichia coli 5S rRNA, has been determined to an overall r.m.s. displacement of 1.08 A (backbone heavy atoms) by heteronuclear NMR spectroscopy (Protein Databank code 1d6k). The interacting molecular surfaces are bipartite for both the...
متن کاملDetection of multiple conformations of the E-domain of 5S rRNA from Escherichia coli in solution and in crystals by NMR spectroscopy
NMR spectroscopy of the E-domain fragment of Escherichia coli 5S rRNA indicates that this molecule exists in solution as either a stem-loop or as a duplex with two U-U base pairs in the bulge region. At temperatures below 27 degrees C, interconversion between the monomeric and dimeric forms in solution occurs on a time scale of weeks and allows the preparation of samples on which NMR structure ...
متن کاملChanges in the conformation of 5S rRNA cause alterations in principal functions of the ribosomal nanomachine
5S rRNA is an integral component of the large ribosomal subunit in virtually all living organisms. Polyamine binding to 5S rRNA was investigated by cross-linking of N1-azidobenzamidino (ABA)-spermine to naked 5S rRNA or 50S ribosomal subunits and whole ribosomes from Escherichia coli cells. ABA-spermine cross-linking sites were kinetically measured and their positions in 5S rRNA were localized ...
متن کاملCharacterization of a Novel Association between Two Trypanosome-Specific Proteins and 5S rRNA
P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are essential and are involved in ribosome biogenesis. Here, we show that these proteins interact in vitro with the 5S rRNA with nearly identical binding characteristics in the absence of other cellular factors. The T. brucei 5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Structure
دوره 5 12 شماره
صفحات -
تاریخ انتشار 1997